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A systematic method for obtaining the asymptotic behavior of a dynamical 
system forced by colored noise in the limit of small intensity is developed. It is 
based on the search of WKB solutions to the Fokker-Planck equation for the 
joint probability density of the system and noise, in which the perturbation 
expansion is continued to the first correction beyond the Hamilton Jacobi limit. 
The method can be applied to noise with correlation time of order unity. It is 
illustrated on the normal form of a pitchfork bifurcation, where it is pointed out 
that additive noise can induce a shift of the most probable value. This prediction 
is confirmed by numerical simulation of the stochastic differential equations. 
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1. I N T R O D U C T I O N  

The study of dynamical systems subjected to colored noise is attracting 
growing interestJ l21 While the internal fluctuations generated spon- 
taneously by a physical system can be described adequately in terms of a 
white noise source, (3 s) there is in general no reason that environmental 
disturbances impinging on a system should share similar properties. For 
instance, turbulence, one of the universal causes of environmental fluc- 
tuations, has a complex spectrum in both the frequency and wave number 

�9 ( 6 )  domain. 
The quantitative theory of nonlinear dynamical systems involving one 

variable and subjected to white noise is a highly developed subject, due to 
the possibility of appealing to the theory of Markovian processes. (2) The 
situation is less satisfactory for colored noise, in which only the pair formed 
by the state variable and the noise is Markovian. A number of interesting 
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results on this problem are available in the literature. However, these 
results are limited either to the vicinity of white noise (7 13) or to the 
opposite limit of very large correlation times. (2'7'i4) The difficulty is to find 
a closed evolution equation for the probability density of the state variable 
alone. Usually, the vicinity of the white noise has to be assumed in order to 
ensure closure/8 1~) It is true that starting from a modified Liouville 
equation it is possible to obtain a closed, non-Markovian evolution 
equation for the probability density of the state variable (12) valid for finite 
correlation times; again, however, the smallness of the correlation time has 
to be assumed in order to achieve further reduction to a Markovian 
equation. (~3) It is the purpose of the present paper to introduce a systematic 
method for tackling colored noise in the limit of small intensity. This new 
method is applicable in a wide range of problems and allows one to 
analyze the local effects around a given attractor of perturbations having 
any correlation time. 

The method is presented in Section 2. It is based on previous work on 
the solution of the master equation for internal fluctuations. (~5"~6'a~ 
Although, as stressed earlier and as will become clear in the sequel, its 
applicability is very wide, attention is focused in Section 2 on dynamical 
systems involving a single variable operating in the vicinity of a simple 
bifurcation point. The local solution of the bivariate Fokker Planck 
equation describing the joint evolution of the system and the noise is 
derived in a limit involving an appropriate combination of the variance 
and the correlation time. From this solution, the shift of the most probable 
value from its deterministic limit is deduced. 

In Section 3 the general results are confronted with the behavior of 
exactly solvable models. Full agreement is found to exist. In Section 4 we 
consider the particularly important case of the normal form of a pitchfork 
bifurcation. The surprising result that additive colored noise can induce a 
shift in the most probable value is confronted successfully with the results 
of numerical simulation. A brief discussion is presented in Section 5. 

2. G E N E R A L  A P P R O A C H  

We consider a nonlinear system involving one variable x and subjec- 
ted to external noise. The evolution of such a system is described in terms 
of the stochastic differential equation 

dx/dt = f ( x )  + g(x) z(t) (1) 

where f (x )  is a nonlinear function of x and z(t) is a random process model- 
ing the fluctuating environment. If g(x) is constant, we have additive noise, 
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while if g(x) depends nontrivially on x, we have multiplicative noise 
(typically this is the case when the control parameters of the system are 
fluctuating quantities). The evolution of the system is Markovian if and 
only if the random process z(t) is a white noise (2) [in this case Eq. (1) is 
often called a Langevin equation]. White noise is only an idealization of a 
more realistic noise with nonvanishing correlation time, that is, colored 
noise. In the present paper, we investigate the effects of colored noise on 
the stationary properties of the system. We assume that though nonwhite, 
the environment is still Markovian, so that we can write a Langevin 
equation for the z-process. The specific Markovian process we consider is a 
stationary, Gaussian process. Following Doob's theorem, (2) z(t) is then 
necessarily an Ornstein-Uhlenbeck (OU) process satisfying 

dz/dt = -Tz  + F(t) (2) 

where F(t) is a Gaussian white noise whose correlation function is given by 

(F( t )  F(C)) = e~2a(t-  ,') (3) 

The correlation function of the OU process is then 

(4) 

The main difficulty when dealing with colored noise is that the 
evolution of the variable x is no longer Markovian, so that there is no 
general method to study the behavior of a system perturbed by colored 
noise. On the other hand, it is always possible to transform a non- 
Markovian process into a Markovian one containing more variables. In 
particular, from Eqs.(1) and (2), the two-variable (x ,z)  process is 
Markovian. Its probability density P(x, z, t) therefore satisfies the Fokker 
Planck equation: 

8 o P 1 2 p 
P(x, z, t) = - ~x I f ( x )  + g (x )z ]P  + ~ ~ z + ~ e~ &2 (5) 

For arbitrary functions f ( x )  and g(x), the solution of such a Fokker-  
Planck equation is not known in general. Thus we have to resort to pertur- 
bative methods for obtaining approximate solutions to Eq. (5). We follow 
here the Hamilton-Jacobi method proposed by Kuboe ta l .  (15) and 
developed further by Lemarchand and Nicolis, (2~ Graham and 
Schenzle, (Iv) and Turner3 23) The starting point is to consider a as a 
smallness parameter and seek for WKB-like solutions in the form (16 ~8) 

P(x,z ,  t ) = N e  (l/~w( ..... ) (6) 
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where N is a normalization constant and U(x, z, t) will subsequently be 
referred to as the stochastic potential. From the standpoint of the noise 
process, e is the variance of the colored noise in the limit 7 ~ oo (white 
noise limit). This means that in the limit of vanishing correlation time, the 
system would be subjected to external white noise with variance e. On the 
other hand, we are in the position to investigate colored noise with 
arbitrary correlation time as long as the product e,72 remains small. 

We now expand the stochastic potential U in the form 

U(x,  z, t) : Uo(x, z, t) + eUl(x ,  z, t) (7) 

Inserting expressions (6) and (7) into Eq. (5) and identifying equal powers 
of a yields 

8Uo 
& 

8U1 
8t 

OVo 1 : (OUo): 
- [ f ( x ) +  g(x)z]-~xx - TZ-~z-z +57 \ 8z ] 

~ - ~  8UI 8U 0 8U 1 
- - - ( f + g z )  -];z-~-zq-~/2 (;3Z 6~Z 

- ~/ - - - ~ - ( f ' - 7 + g ' z )  

(8a) 

(8b) 

The zeroth order in e, Eq. (8a) is an equation of the Hamilton Jacobi type. 
In general, the solutions of such an equation are unknown. Moreover, Uo 
is not globally differentiable in general. (191 In the following we will bypass 
these difficulties by dealing with a local theory around one steady state. To 
proceed further, we assume therefore that the "deterministic" system 

dx/dt = f (x )  (9) 

possesses a stable stationary solution 2 around which f (x )  and g(x) are 
analytical functions [note that generally f (x )  and g(x) are polynomials, so 
that the assumption of analyticity is rather mild]. Expandingf(x)  and g(x) 
around this point and keeping the first nontrivial contributions, we obtain 

f ( x )  = f ' ( x - -  ff) + � 8 9  2 + " "  

g ( x )  = g + g ' ( x - -  2 )  + ' 
(lo) 

where 

f t  d f  .,c ~ 
=dxx g =  g(2), etc. 
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A typical situation arises when the dynamical system admits a 
bifurcation/4): for a critical value of some control parameter a stationary 
state assumed here to be the trivial solution x = 0  loses its stability, 
whereas new nontrivial stationary states emerge. A characteristic feature of 
our analysis is that the expansions in Eqs. (10) are carried out around one 
of these new stable stationary states. This will allow us to obtain a 
probability density that is locally normalizable and to avoid logarithmic 
singularities in the expansion of the stochastic potential U. 

Hereafter we are interested primarily in the stationary properties of the 
system (1). The extrema of the stationary probability density are valuable 
indicators of the effect of noise on the steady state of the system. (2) Our 
objective is thus to obtain a general approximate expression for the shift of 
the most probable value of the x-process up to first order in e. As it turns 
out, if the analysis is limited to Uo, the shift always vanishes. We must 
therefore include contributions coming from U1. Now, as seen from 
Eq. (8b), to compute U1 to the dominant order, contributions to U 0 
beyond the quadratic terms are needed. Hence, in calculating Uo we have 
to extend the Taylor expansion around x to such higher order terms. In 
fact, in order to ensure normalization, the expansion should be pursued 
until quartic terms. The evaluation of these terms is in general extremely 
arduous. Fortunately, up to first order in e they do not affect the most 
probable value, so that an explicit expression of quartic terms is not 
necessary for our purpose. Denoting X =  x - ) ? ,  we therefore expand Uo in 
the form: 

Uo(X, z) = �89 X 2 + a2Xz + la3z2 4- lb, X 3 4- lb2X2z  

1 2 1 3 4- ~b3Xz 4- gb4z 4- quartic terms (11) 

The absence of first-order terms in this expression is related to the fact that 
Uo is extremum on the deterministic stationary states, as can be seen 
directly from Eq. (8a). Inserting Eqs. (10) and (11) into Eq. (8a), we obtain 
a set of equations for the seven coefficients appearing in Eq. (11). The 
procedure for solving these equations follows straightforwardly the method 
developed by Lemarchand and Nicolis. After some algebra, we obtain 

Uo(X, z ) -  72g2 ( f ' -  7)Z x 2 -  2 ( f ' - , / )  Y z -  ( f ' - ' / )  z 2 

1 1 ( f ,  __ ~ ) 2  
+ 

3 72g 3 (2f '  -- ? ) ( f '  -- 27) 

x (20f'3g ' -  28,/f'2g ' -  14f'2f"g + 137f~f"g + 8~,2f'g ' -  272f"g)X 3 



196 Altares and Nicolis 

1 ( f ' - 7 )  + - -  
72g 2 ( 2 f ' -  7 ) ( / '  - 27) 

• (10f'3g ' - 14~f'2g ' - 8f'2f"g + 97 f f "g  + 472f'g ' - 272f"g) X2z 

2 ( f ' - 7 )  
+ - -  ( f 'g '  - f "g)  Xz 2 

72g ( f ' -  27) 

2 1 ( f ' - 7 )  (f ,g, f , ,g)z3+quart ic terms (12) 
+ 572 ( 2 f ' -  7 ) ( f ' -  27) 

In an analogous manner, we evaluate UI from Eq. (Sb), 

1 1 
UI(X, z) - (6f'2g ' -  4 f f " g  - 87f'g' 

g ( 2 f ' -  7 ) ( f ' - 2 7 )  

1 
+ 37f"g + 272g')X+ ( f ' g ' -  f "g)z  

(2f '  - 7 ) ( f '  - 27) 

+ quadratic terms (13) 

Note that, as for the quartic terms in U0, quadratic terms in U1 contribute 
to the shift of the most probable value only to higher orders in e. We thus 
have a local expression for the bivariate stochastic potential. 

As mentioned above, our aim is to estimate the perturbation of the 
state variable X due to colored noise. We therefore construct from the 
bivariate probability density the probability density of a single variable X 
and z: 

P(z) = P(x,  z) d x  (15) 

with P(X, z) given by Eqs. (6), (12), and (13). Note that in Eq. (I5) we 
have extended the domain of integration to the entire real axis, dis- 
regarding the boundaries of the x-process. Assuming inaccessible boun- 
daries, this p rocedure  is justified because P(X, z) decays exponentially 
around its extrema, so that, for e small enough, the modification 
introduced is smaller than any power of e. 

A necessary condition for the expansion (11) to be consistent is that 
Eq. (15) yields the same expression of P(z) as the exact one deduced from 
Eqs. (2) and (3), namely 

P(z) = (~eT) 1/2 e x p [ -  (1/eT) Z 2] (16) 
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To check this fact, we estimate asymptotical ly expression (15). For  fixed z, 
we compute  the ext remum of U(X, z): 

g 1 1 

X -  ( f , _ ~ ) z - - ~ g ( 2 f ,  7 ) ( f , . 27 ) ( f ,  7)2 

x (--4f '2+2f ' f 'g+67f 'g ' --Tf 'g--Z72g')z  2 

1 e 

+ 2 72g (2f '  -- 7 ) ( f '  -- 27 ) ( f '  -- 7) 2 

x (6f '2g ' -  4f'f"g -- 87f'g'+ 3yf"g + 272g ') (17) 

In a ne ighborhood ]z[ ~ e l/2 this ex t remum is a minimum of the stochastic 
potential  U(X, z), as can be seen by differentiating twice and noting that 
expansion (10) a round  a stable s tat ionary point  implies that the coefficient 
al in expansion (11) is always positive ( f ' < 0 ) .  Defining the shifted 
variable Y =  X - ) 7 ,  we obtain in this new variable 

U ( Y , z ) -  ( f ' - 7 ) 2  f '  (1  2 
72g 2 (2f '  - 7 ) ( f '  - 27 ) ( f '  - 7) 

• ( _ 5f,2g, jr_ 3f'f"g + 77f'g' -- 27f"g -- 272g')z) y2 
I 

1 1 ( f ' - - 7 )  2 (20f,3g,_287f,2g,_ lgf,2f,,g 
+ 3 72g 3 (2f '  -- 7 ) ( f ' - -  27) 

z 2 8 
+ 8 7 2 f , g ,  _ 2 7 f , , g  ) y 3  4- - -  q- 

7 ( 2 f ' - 7 ) ( f ' - 2 7 ) ( f ' - 7 )  
x ( - 5f  '2 + 3f'f"g + 77f'g' - 27f"g - 272g ') z + quartic terms (18) 

The remarkable  fact is that in these shifted variables the z 3 term cancels. 
We are now in a position to estimate integral (15). The dominant  con- 
tr ibution to the integral comes from a ne ighborhood ]Y[ ~gl/2,  Z being 
itself of order  e 1/2. In such a vicinity, the contr ibut ion of term y 3  to the 
stochastic potential  U(z) is of order  ~2, so that it may be safely neglected. 
Hence, the integral (15) can be computed  by elementary methods 

{~ze~ 1/2 7g [ 1 -  2 
P ( z ) = N \ f , ]  ] f ' -T]  ( 2 f ' - 7 ) ( f ' - 2 7 ) ( f ' - 7 )  

x ( - 5 f ' 2 g '  + 3f'f"g+ 77f'g'--27f'g-272g')z] 
1/2 

!Fz 
e 17  (2 f ' -7 ) ( f ' - -27) ( f ' - -7 )  

x (--5f '2g'+3f'f"g+Vyf'g'--27f"g--272g')z+O(~2)]} (19) 
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By expanding the square root, we see that the term az of U(z) cancels and 

U(Z) = Z2/7 Jr 0(~ 2) (20) 

in agreement with Eq. (16). Thus, our expansion procedure is consistent up 
to order ~3/2. 

Let us come now to the probability density for the x-process. We 
proceed in a way similar to the z-process: for given X, we calculate the 
extremum ~ of U(X, z) given by Eqs. (12) and (13). Noting again that, 
since the coefficient a 3 in expansion (11) is always positive, this extremum 
is a minimum of the stochastic potential U ( X , z )  in a neighborhood 
IXI ~ e  ~/2. Following the same procedure as before, we expand U ( X , z )  
around this local minimum ~ and neglect terms ( z -  ~)3 whose contribution 
would be of order e2. We finally obtain 

_ _  1 ( S ' - 7 )  u ( x )  = ( f '  - 7) f , x 2  
7 g  2 3 7 g  3 ( 2 f '  - 7 ) ( f '  - 2 7 )  

x ( -  12f'3g ' + 6f '2 f"g  + 247f'2g ' 

- 97 f ' f "g  - 272f'g ' + 2y2f"g) X 3 

+ (4f '2g ' - 2 f ' f "g  
g ( 2 f ' -  7 ) ( f ' - 2 7 )  

- 77f'g' + 27f"g + 272g ') X +  quartic terms (21) 

As mentioned above, global normalization requires the presence of quartic 
terms in expression (21). Now, it is easy to see that up to first order in e, 
these terms do not contribute to the shift of the extremum of U(X). From 
Eq. (21) we deduce that the most probable value X,, is given by 

x ~ =  
1 eTg 

2 (2f'  - 7 ) ( f '  - 27)(f '  - 7 ) f '  

x ( 4 f ' 2 g  ' - 2 f ' f " g  - 7yf 'g'  + 27f"g + 272g ') (22) 

This is a general expression valid for any value of the correlation time I/7, 
provided that e72 is small. Let us comment on this expression, exploring 
first the vicinity of white noise. This limiting case corresponds to a 
vanishing correlation time. Letting 7 -~ oo in Eq. (22) yields 

1 gg' 
Xm~vN= ~ - ~  e (23) 
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This result is in full agreement with the expression of the most probable 
value obtained from a one-dimensional Fokker-Planck equation in the 
Stratonovich version. We thus have a manifestation of the Wong-Zakai 
theorem, which states that if white noise is seen as the limit of colored noise 
with correlation time tending to zero, then the Stratonovich interpretation 
of the Fokker-Planck equation has to be adopted. We next consider 
the opposite limit of long correlation time. In this case, x becomes a fast 
relaxing variable as compared with z(t) .  We can obtain the stationary 
probability density of the x-process by setting 2 = 0 in Eq. (1), expressing z 
in terms of x and using this relation to change variables in Eq. (16) (this is 
the well-known adiabatic elimination procedure (5/ or the switching curve 
approximationI21). From Eq. (1), we have 

1 1 t t ~  z = - - 5  [ f ' g X +  : f  g -  gT")X2], (24) 
U 

Substituting this expression into Eq. (16) yields 

p ( x ) = ( ~ z e ~ ) - l / 2  1 ( l f ' 2  ) _ _ _ _  
-~  ] f ' g '  + ( f " g  - 2 g ' f ' ) X t  exp e7 g2 X2 (25) 

The maximum of this probability density is 

7 
XmAO = - 7 , ~  (2 f '  g'  - f " g ) a  

. 1 -  
(26) 

It is immediately seen that up to first order in 7, the same expression is 
recovered by letting 7 --+ 0 in Eq. (22). We thus have the confirmation that 
our formula (22) gives accurate results for any value of 7. In the case of 
additive noise, it is easy to see that Eq. (22) taken in the limit of small 
correlation time yields the same result as Eq. (8.107) of Ref. 2 taken in the 
limit of small noise. It is worth emphasizing that due to the nonlinearities 
of the system, Eq. (22) predicts a shift in the most probable value even in 
the case of additive colored noise (in the limit of white noise this shift tends 
of course to zero). We have here evidence of a qualitative difference 
between additive white noise and colored noise. This result will be dis- 
cussed further in Section 4. 

3. A CLASS OF EXACTLY S O L V A B L E  M O D E L S  

In this section, we consider a class of models for which it is possible to 
obtain the exact stationary solution to Eq. (5), and compare this exact 
result with the approximate results of the preceding section. The models we 
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are dealing with satisfy a condition that reduces the problem to a linear 
one. (2'22) Starting from Eq. (1), it is easy to see that if functions f ( x )  and 
g(x)  satisfy the condition 

f (x)  c~ fx 1 g(x~) - - ~  ds + fl; c~ > 0 (27) 

the substitution 

yields a linear stochastic differential equation for the v-process. We thus 
have a two-dimensional Fokker-Planck equation, which can be solved 
exactly in the steady state. After straightforward algebra, we get the follow- 
ing expression for the stationary probability density of the x-process: 

P(x)  = N IR'(x)l exp - R(x)  - (28) 

where 

Because no approximation has been made, this probability density is 
globally normalizable (recall that c~ > 0). The most probable values of P(x)  

are solutions of 

f (Xm) e 7 g(xm) g , (xm)=O (29) 
2C~+7 

If we introduce assumption (27) into Eq. (22), we recover Eq. (29), thus 
establishing the validity of our previous derivation. Let us treat a specific 
example, which will shed some further light on the general results of the 
preceding section. 

The particular class of models described by 

dx/dt = 2x - x ~ + x"z (30) 

meets condition (27) with ~ = 2 ( n - 1 ) ,  f l= 1. It is worth noting that the 
substitution x ' =  x (n 1)/n transforms a model with a nonlinearity of degree 
n to one with nonlinearity of degree n + 1. All the models of class (30) are 
thus equivalent, and it is sufficient to study a particular case to know the 
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behavior of systems (30) for any value of n. In what follows, we treat the 
case n = 2. The exact solution to Eqs. (8a) and (Sb) is 

2 + 7  

while the exact probability density of the x-process is given by 

P(x)=N-~sex p e7 -- (32) 

To compare these expressions to the results of the previous section, we 
expand the stochastic potential and the probability density around the 
nontrivial stationary state 2 = )o. This yields 

2 2 2 +;~ [-2+ ~ X2 2 2 + ' / X 3 + ~ X z  V(Z, z) = - - ~  L ~ - - Xz+z2-Z ff -- 

3(2+7)X4 2X3Z4 - 2eX e XZ ] (33) 
+ --77- 

and 

P(X) = N exp / 
k 

+ 7  x x2 

(34) 

One easily verifies that these expressions are identical to those given by 
Eqs. (12) and (13) up to order C 3/2. In this particular case, it is possible to 
compute the expansion (33) from Eqs. (8a) and (Sb) and check consistency 
up to second order in e. Equation (34) also illustrates the fact that up to 
cubic terms, P(x) is only locally normalizable, whereas the inclusion of 
quartic terms yields a globally normalizable probability density. 

4. S T O C H A S T I C A L L Y  F O R C E D  N O R M A L  F O R M  OF A 
P I T C H F O R K  B I F U R C A T I O N  

In this section, we apply the general results of Section 2 to study the 
stochastically perturbed pitchfork bifurcation: 

dx/dt=~x-x3; 2 > 0  (35) 

As is well known Eq. (35) is the normal form of a wide class of dynamical 
systems undergoing such a transition. In the sequel, we study the effect of 
both additive and multiplicative colored noise on the system. 
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4.1. Multiplicative Noise 

We consider 

d x / d t  = 2 x  - x 3 + x z  (36) 

From Eq. (22) the most probable value turns out to be 

1 e7 - 4 2 2 + 2 7 + 7 2  (37) 
Xm = "f2~ 4 ,,f~ (42 + 7)(22 + 7)(2 + 7) 

This problem has also been treated by Sancho e t a / .  (1~ on the basis of an 
expansion of the probability density in powers of the correlation time 
r = 1/y of the noise. Up to first order in r and e, formula (37) yields results 
analogous to those of Ref. 10. However, for larger values of r, our results 
differ from those obtained in Ref. 10 under an a d h o c  exponentiation 
assumption (i.e., the transformation of the first terms of a Taylor expansion 
into an exponential). From Eq. (37), we note that for any value of the con- 
trol parameter 2, there always exists a value of the correlation time such 
that the shift of the most probable value vanishes. This has to be con- 
trasted with the case of multiplicative white noise, where the shift always 
has a nonvanishing value. Here again we have a qualitative difference 
between white and colored noise. 

4.2.  A d d i t i v e  N o i s e  

We have 

d x / d t  = d x  - x 3 + z (38) 

The most probable value is now given by 

3 7 1 
Xm = ~ + 2 ~ (42 + 7)(2 + 7) ~ (39) 

In contrast to the multiplicative case, the shift is always positive and 
vanishes in the limit of white noise. Therefore, additive colored noise tends 
to favor the nontrivial stationary state. In order to test this surprising 
result, we carried out a numerical simulation of Eq. (38) with z ( t )  given by 
Eq. (2). Specifically, we create particular realizations of the x-process by 
standard Monte Carlo techniques. (~~ For each realization, we integrate 
Eqs. (2) and (38) over 10,000 steps of size 0.005, obtaining in this way 
11,100 independent realizations. Pst(x) is represented by a histogram with a 
mesh size of 0.002. In order to ensure that Pst(x) is indeed meaningful, we 
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O= 

I I I i I 

I I I 

0 .200 .~00 .600 .800 
X 

.3 

.2 

Fig. 1. Stationary probability density for ~ =0.05, 2 0.5, 7 - I .  (--) The deterministic 
steady state; ( - - )  the most probable value deduced from Eq. (22). The theoretical shift is 
0.024, while numerical simulation gives 0.029. 

chose the paramete rs  a, 2, and 7 in such a way that  the determinist ic 
relaxation t ime is much  smaller than the mean  exit t ime f rom the at t ract ion 
basin est imated from Kramer ' s  theory. We consider the following situation: 

= 0.05, 2 = 0.5, 7 = 1 (for these values of the parameters ,  the mean  first 
exit t ime is of the order  of 240). The resulting h is togram is plotted in Fig. 1. 
As expected f rom Eq. (39), Fig. 1 shows a shift in the most  p robab le  value. 
This shift is close to the theoretical  prediction. Let us ment ion  finally that  
the mean  value ( x )  is shifted toward  the trivial state (such a shift occurs 
a lready in the white noise case). The value of this shift is 0.030. F r o m  
Eq. (21), it is easy to est imate this mean  value by means  of steepest descent 
methods.  We obta in  in this case a shift of the mean  value of 0.026, in good 
agreement  with the numerical  simulation. 

5. C O N C L U S I O N S  

In this paper  we have developed a canonical  procedure  for analyzing 
the effect of colored noise in nonl inear  dynamical  systems. In the case of 
one variable and a simple bifurcation to which our  analysis has been 
limited so far, we have obta ined  model- independent  expressions for the 
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effect of noise on the stat ionary probabil i ty density. The extension of the 
analysis to higher codimension bifurcations or to multivariate systems 
giving rise, for instance, to H o p f  bifurcation can be carried out along 
similar lines, the only difference being a greater algebraic complexity. 

Another  interesting feature of the method is the possibility of 
analyzing colored noise with correlation times of the order of unity. In this 
range qualitative differences with white noise have been brought  out. 

The extension of the present work to the t ime-dependent properties of 
the systems, in particular the corrections to the Kramer ' s  formula of the 
mean exit time arising from colored noise, would be highly desirable/24t It 
should be stressed, however, that  to this end a global estimation of the 
stochastic potential would be necessary. An interesting problem that 
remains to be investigated is the process of ignition in explosive systems, 
which has been shown previously to be quite sensitive to stochastic 
disturbances. (251 
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